A. M. Bloch · I. I. Hussein · M. Leok ·
A. K. Sanyal

A Discrete Variational Integrator for Optimal Control Problems on $SO(3)$

Received: date / Revised: date

Abstract In this paper we study a discrete variational optimal control problem for the rigid body. The cost to be minimized is the external torque applied to move the rigid body from an initial condition to a pre-specified terminal condition. Instead of discretizing the equations of motion, we use the discrete equations obtained from the discrete Lagrange–d’Alembert principle, a process that better approximates the equations of motion. Within the discrete-time setting, these two approaches are not equivalent in general. The kinematics are discretized using a natural Lie-algebraic formulation that guarantees that the flow remains on the Lie group $SO(3)$ and its algebra $so(3)$. We use Lagrange’s method for constrained problems in the calculus of variations to derive the discrete-time necessary conditions. We give a numerical example for a three-dimensional rigid body maneuver.
1 Introduction

This paper deals with a structure-preserving computational approach to the optimal control problem of minimizing the control effort necessary to perform an attitude transfer from an initial state to a prescribed final state, in the absence of a potential field. The configuration of the rigid body is given by the rotation matrix from the body frame to the spatial frame, which is an element of the group of orientation-preserving isometries in \mathbb{R}^3. The state of the rigid body is described by the rotation matrix and its angular velocity.

To motivate the computational approach we adopt in the discrete-time case, we first revisit the variational continuous-time optimal control problem. The continuous-time extremal solutions to this optimal control problem have certain special features, since they arise from variational principles. General numerical integration methods, including the popular Runge-Kutta schemes, typically preserve neither first integrals nor the characteristics of the configuration space. Geometric integrators are the class of numerical integration schemes that preserve such properties, and a good survey can be found in [4]. Techniques particular to Hamiltonian systems are also discussed in [14] and [20].

Our approach to discretizing the optimal control problem is in contrast to traditional techniques such as collocation, wherein the continuous equations of motion are imposed as constraints at a set of collocation points. In our approach, modeled after [9], the discrete equations of motion are derived from a discrete variational principle, and this induces constraints on the configuration at each discrete time step.

This approach yields discrete dynamics that are more faithful to the continuous equations of motion, and consequently yields more accurate solutions to the optimal control problem that is being approximated. This feature is extremely important in computing accurate (sub)optimal trajectories for long-term spacecraft attitude maneuvers. For example, in [7], the authors propose an imaging spacecraft formation design that requires a continuous attitude maneuver over a period of 77 days in a low Earth orbit. Hence, attitude maneuver has to be very accurate to meet tight imaging constraints over long time ranges. The proposed variational scheme can also be easily extended to other types of Lie groups. For example, in long range inter-planetary orbit transfers (see, for example, [1]), one is interested in computing optimal or suboptimal trajectories on the group of rigid body motions $\text{SE}(3)$ with a high degree of accuracy. Similar requirements also apply to the control of quantum systems. For example, efficient construction of quantum gates is a problem on the unitary Lie group $\text{SU}(N)$. This is an optimal control problem, where one wishes to steer the identity operator to the desired unitary operator (see, for example, [19] and [11]).

Moreover, an important feature of the way we discretize the optimal control problem is that it is $\text{SO}(3)$-equivariant. The $\text{SO}(3)$-equivariance of our numerical method is desirable, since it ensures that our results do not depend on the choice of coordinates and coordinate frames. This is in contrast to methods based on coordinatizing the rotation group using quaternions, (modified) Rodrigues parameters, and Euler angles, as given in the survey...
If the optimal cost function is $SO(3)$-invariant, as in [21], the use of generalized coordinates imposes constraints on the attitude kinematics. For the purpose of numerical simulation, the corresponding discrete optimal control problem is posed on the discrete state space as a two stage discrete variational problem. In the first step, we derive the discrete dynamics for the rigid body in the context of discrete variational mechanics [16]. This is achieved by considering the discrete Lagrange–d’Alembert variational principle [10] in combination with essential ideas from Lie group methods [8], which yields a Lie group variational integrator [15]. This integrator explicitly preserves the Lie group structure of the configuration space, and is similar to the integrators introduced in [12] for a rigid body in an external field, and in [13] for full body dynamics. These discrete equations are then imposed as constraints to be satisfied by the extremal solutions to the discrete optimal control problem, and we obtain the discrete extremal solutions in terms of the given terminal states.

The paper is organized as follows. As motivation, in Section 2, we study the optimal control problem in continuous-time. In Section 3, we study the discrete-time case. In particular, in Section 3.1 we state the optimal control problem and describe our approach. In Section 3.2, we derive the discrete-time equations of motion for the rigid body starting with the discrete Lagrange–d’Alembert principle. These equations are used in Section 3.3 for the optimal control problem. In Section 4, we describe an algorithm for solving the general nonlinear, implicit necessary conditions for $SO(3)$ and give numerical examples for rest-to-rest and slew-up spacecraft maneuvers.

2 Continuous-Time Results

2.1 Problem Formulation

In this paper, the natural pairing between $so^*(3)$ and $so(3)$ is denoted by $\langle \cdot, \cdot \rangle$. Let $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle^*$ denote the standard (induced by the Killing form) inner product on $so(3)$ and $so^*(3)$, respectively. The inner product $\langle \cdot, \cdot \rangle^*$ is naturally induced from the standard norm $\langle \xi, \omega \rangle = -\frac{1}{2} \text{Tr} (\xi^T \omega)$, for all $\xi, \omega \in so(3)$, through

\[
\ll \eta, \varphi \gg^* = \ll \eta, \varphi^\flat \gg = \ll \eta, \omega \gg = \langle \xi, \omega \rangle = \langle \xi, \omega \rangle = \langle \xi, \omega \rangle \quad \text{(1)}
\]

where $\varphi = \omega^\flat \in so^*(3)$ and $\eta = \xi^\flat \in so^*(3)$, with $\xi, \omega \in so(3)$ and \flat are the musical isomorphisms with respect to the standard metric $\langle \cdot, \cdot \rangle$. On $so(3)$, these isomorphisms correspond to the transpose operation. That is, we have $\varphi = \omega^T$ and $\eta = \xi^T$.

Let $J : so(3) \rightarrow so^*(3)$ be the positive definite inertia operator. It can be shown that

\[
\langle J(\xi), \omega \rangle = \langle J(\omega), \xi \rangle. \quad \text{(2)}
\]

On $so(3)$, J is given by $J(\xi) = J\xi + \xi J$, where J is a positive definite symmetric matrix (see, for example, [3,6]). Moreover, we also have $J(\eta^\flat)^\sharp =

\((J\eta^T + \eta^T J)^T = J(\eta)\), which is an abuse of notation since \(\eta \in so^*(3)\). For the sake of generality and mathematical accuracy we will use the general definitions, though it helps to keep the above identifications for \(so(3)\) in mind.

In this section we review some continuous-time optimal control results using a simple optimal control example on \(SO(3)\). The problem we consider is that of minimizing the norm squared of the control torque \(\tau \in so^*(3)\) applied to rotate a rigid body subject to the Lagrange–d’Alembert principle for the rigid body\(^1\) whose configuration is given by \(R \in SO(3)\) and body angular velocity is given by \(\Omega \in so(3)\). We require that the system evolve from an initial state \((R_0, \Omega_0)\) to a final state \((R_T, \Omega_T)\) at a fixed terminal time \(T\). Hence, we have the following minimum control effort optimal control problem.

Problem 21. Minimize

\[
J = \frac{1}{2} \int_0^T \langle \tau, \tau \rangle^* \, dt
\]

subject to

1. **satisfying** Lagrange–d’Alembert principle:

\[
\delta \int_0^T \frac{1}{2} \langle J(\Omega), \Omega \rangle \, dt + \int_0^T \langle \tau, W \rangle \, dt = 0,
\]

subject to \(R = R\Omega\), where \(W\) is the variation vector field to be defined below,

2. **and the boundary conditions**

\[
R(0) = R_0, \Omega(0) = \Omega_0, R(T) = R_T, \Omega(T) = \Omega_T.
\]

We now show that the constraint of satisfying the Lagrange–d’Alembert principle leads to the following problem formulation, where the rigid body equations of motion replace the Lagrange–d’Alembert principle.

Problem 22. Minimize

\[
J = \frac{1}{2} \int_0^T \langle \tau, \tau \rangle^* \, dt
\]

subject to

1. the **dynamics**

\[
\dot{R} = R\Omega \\
\dot{M} = ad^* M + \tau = [M, \Omega] + \tau
\]

where \(M = J(\Omega) \in so^*(3)\) is the momentum,

\(^1\) This is equivalent to constraining the problem to satisfy the rigid body equations of motion given by equations (7). However, for the sake of generality that will be appreciated in the discrete-time problem, we choose to treat the Lagrange–d’Alembert principle as the constraint as opposed to the rigid body equations of motion. Both are equivalent in the continuous-time case but are generally not equivalent in the discrete-time case.
2. and the boundary conditions

\[\mathbf{R}(0) = \mathbf{R}_0, \quad \Omega(0) = \Omega_0, \quad \mathbf{R}(T) = \mathbf{R}_T, \quad \Omega(T) = \Omega_T. \] (8)

In the above, \(\text{ad}^* \) is the dual of the adjoint representation, \(\text{ad} \), of \(\mathfrak{so}(3) \)
and is given by \(\text{ad}^*[\mathbf{\xi}] = -[\mathbf{\xi}, \mathbf{\eta}] \in \mathfrak{so}^*(3) \), for all \(\mathbf{\xi} \in \mathfrak{so}(3) \) and \(\mathbf{\eta} \in \mathfrak{so}^*(3) \).
Recall that the bracket is defined by \([\mathbf{\xi}, \mathbf{\omega}] = \mathbf{\xi}\mathbf{\omega} - \mathbf{\omega}\mathbf{\xi} \).

2.2 The Lagrange–d’Alembert Principle and the Rigid Body Equations of Motion

In this section we derive the forced rigid body equations of motion (equations (7)) from the Lagrange–d’Alembert principle. We begin by appending the constraint \(\dot{\mathbf{R}} = \mathbf{R}\dot{\Omega} \) to the Lagrangian

\[0 = \delta \int_0^T \left(\frac{1}{2} \mathbf{J}(\Omega) : \dot{\Omega} \right) + \mathbf{\Lambda} : (\mathbf{R}^{-1}\dot{\mathbf{R}} - \dot{\Omega}) \right) dt + \int_0^T \mathbf{\tau} : \mathbf{W} dt, \]

where \(\mathbf{\Lambda} \in \mathfrak{so}^*(3) \) is a Lagrange multiplier. Taking variations, we obtain

\[0 = \left[\mathbf{J}(\mathbf{W}(t)) \right] \frac{d}{dt} + \int_0^T \left\{ -\mathbf{\Lambda} - \mathbf{[\Omega, \mathbf{\Lambda}]} + \mathbf{\tau}, \mathbf{W} \right\} + \left\{ -\mathbf{\Lambda} + \mathbf{J}(\Omega), \delta\mathbf{\Omega} \right\} dt, \]

where \(\mathbf{W}(t) \in \mathfrak{so}(3) \) is the variation vector field associated with a curve \(\mathbf{R}(t) \) on \(\mathbf{SO}(3) \) [2, 23] that satisfies

\[\delta\mathbf{R}(t) = \mathbf{RW} \in T_{\mathbf{R}(t)} \mathbf{SO}(3), \quad \mathbf{W}(0) = 0, \quad \mathbf{W}(T) = 0, \]

where \(\delta\mathbf{R} \) is defined by \(\delta\mathbf{R}(t) = \partial\mathbf{R}_t(\epsilon)/\partial\epsilon \bigg|_{\epsilon=0}, \) with \(\mathbf{R}_t(\epsilon) := \mathbf{R}(t, \epsilon) \) is the variation of the curve \(\mathbf{R}(t) \) that satisfies \(\mathbf{R}(t, 0) = \mathbf{R}(t) \). The variation in the velocity vector field is denoted \(\delta\mathbf{\Omega} \). For a deeper understanding of variations of general vector fields, see for example the treatment in [5].

Since \(\delta\mathbf{\Omega} \) and \(\mathbf{W} \) are arbitrary and independent, we must have \(\mathbf{\langle -\mathbf{\Lambda} + \mathbf{J}(\Omega), \delta\mathbf{\Omega} \rangle} = 0 \) and hence \(\mathbf{\Lambda} = \mathbf{J}(\Omega) \) which is the body angular momentum. For the remainder of this section, we set \(\mathbf{M} = \mathbf{\Lambda} = \mathbf{J}(\Omega) \). We are thus left with only the first term in the integrand. This gives us the forced second order dynamics of the rigid body which is \(\mathbf{M} = \mathbf{[M, \Omega]} + \mathbf{\tau} \). The term outside the integral vanishes by virtue of the boundary conditions. This completes the proof that the Problem (21) is equivalent to Problem (22).

A Direct Approach. We now give a direct derivation that does not involve the use of Lagrange multipliers. This approach can be found in Section 13.5 in [17]. First, we take variations of the kinematic condition \(\dot{\mathbf{\Omega}} = \mathbf{R}^{-1}\dot{\mathbf{R}} \) to obtain \(\delta\mathbf{\Omega} = -\mathbf{R}^{-1}(\delta\mathbf{R})\mathbf{R}^{-1}\dot{\mathbf{R}} + \mathbf{R}^{-1}(\delta\dot{\mathbf{R}}) \). As defined previously, we have \(\mathbf{W} = \mathbf{R}^{-1}\delta\mathbf{R} \) and, therefore, \(\mathbf{\dot{W}} = -\mathbf{R}^{-1}\mathbf{R}\mathbf{R}^{-1}\delta\mathbf{R} + \mathbf{R}^{-1}\delta\dot{\mathbf{R}} = -\mathbf{\Omega}\mathbf{W} + \mathbf{R}^{-1}\delta\mathbf{R} \), since \(\frac{d}{dt}\delta\mathbf{R} = \frac{d}{dt}\delta\mathbf{R} \) (see for example [18], page 52). Hence, we have

\[\delta\mathbf{\Omega} = -\mathbf{W}\mathbf{\Omega} + \mathbf{\Omega}\mathbf{W} + \mathbf{\dot{W}} = \text{ad}_\mathbf{\Omega}\mathbf{W} + \mathbf{\dot{W}}. \] (9)
Taking variations of the Lagrange–d’Alembert principle we obtain
\[\int_0^T \langle J(\Omega), \delta \Omega \rangle + \langle \tau, W \rangle \, dt = 0. \]

Using the variation in equation (9) and integrating by parts, we obtain
\[0 = \int_0^T \left(-\dot{M} + \text{ad}_\Omega^* M + \tau, W \right) \, dt + \left[\langle J(\Omega), W(t) \rangle \right]_0^T, \]

where we have used the property
\[\langle \eta, \text{ad}_\omega \xi \rangle = \langle \text{ad}_\omega^* \eta, \xi \rangle, \quad \eta \in so^*(3), \quad \omega, \xi \in so(3). \] (10)

This gives the desired result, with \(M = J(\Omega) \).

In Section 2.3, we demonstrate how the necessary conditions for Problem (22) are derived using a variational approach.

2.3 Continuous-Time Variational Optimal Control Problem

A direct variational approach is used here to obtain the differential equation that satisfies the optimal control Problem (22).

A Second Order Direct Approach. “Second order” is used here to reflect the fact that we now study variations of second order dynamical equations as opposed to the kinematic direct approach studied in Section 2.2. We now give the resulting necessary conditions using a direct approach as in [17]. We already computed the variations of \(R \) and \(\Omega \). These were as follows:
\[\delta R = RW \quad \text{and} \quad \delta \Omega = \text{ad}_\Omega W + \dot{W}. \]

We now compute the variation of \(\dot{M} \) with the goal of obtaining the proper variations for \(\tau \):
\[\delta \dot{M} = J \left(\delta \dot{\Omega} \right) = J \left(\frac{d}{dt} \delta \Omega + \mathcal{R}(W, \Omega) \Omega \right), \]

where \(\mathcal{R} \) is the curvature tensor on SO(3). The curvature tensor \(\mathcal{R} \) arises due to the identity (see [18], page 52)
\[\frac{\partial}{\partial \epsilon} \frac{\partial}{\partial t} Y - \frac{\partial}{\partial \epsilon} \frac{\partial}{\partial t} Y = \mathcal{R}(W, Y)\Omega, \]

where \(Y \in TSO(3) \) being any vector field along the curve \(R(t) \in SO(3) \).

Taking variations of \(M = \text{ad}_\Omega^* M + \tau \) we obtain \(\delta M = \text{ad}_\Omega^* \delta M + \text{ad}_\Omega^* \delta M + \delta \tau \). We now have the desired variation in \(\tau \):
\[\delta \tau = J \left(\mathcal{R}(W, \Omega) \right) + \frac{d}{dt} J(\delta \Omega) - \text{ad}_\Omega^* \delta M - \text{ad}_\Omega^* \delta M. \] (11)

Taking variations of the cost functional (6) to obtain:
\[\delta J = \int_0^T \langle J(\dot{\zeta}) - \text{ad}_\Omega^* \langle J(\dot{\zeta}) \rangle + \dot{\eta} - \frac{d}{dt} (\text{ad}_\Omega^* M) \]
\[+ \left[\mathcal{R}(J(\zeta)^2, \Omega) \right] + \text{ad}_\Omega^* \text{ad}_\Omega^* M - \text{ad}_\Omega^* \eta, W \rangle \, dt, \]
where \(\varsigma = \tau \in \mathfrak{s}(3) \) and \(\eta = J(\text{ad}_\Omega \varsigma) \in \mathfrak{s}(3) \). In obtaining the above expression, we have used integration by parts and the boundary conditions (7), equations (9) and (11), and the identities (1), (2) and (10). Hence, we have the following theorem.

Theorem 21. The necessary optimality conditions for the problem of minimizing (6) subject to the dynamics (7) and the boundary conditions (8) are given by the single fourth order differential equation

\[
0 = J(\dot{\varsigma}) - \text{ad}_{\Omega}^{*}(J(\varsigma)) + \frac{d}{dt}(\text{ad}_{\Omega}^{*}M) + \left[R \left((J(\varsigma))^2, \Omega \right) \right]^{\nabla} + \text{ad}_{\Omega}^{*}(\text{ad}_{\Omega}^{*}M) - \text{ad}_{\Omega}^{*}\eta,
\]

as well as the equations (7) and the boundary conditions (8), where \(\varsigma \) and \(\eta \) are as defined above.

In obtaining the above result we used the initial conditions (8). We also used the fact that the vector fields \(\Omega \) and \(W \) are left-invariant vector fields. The curvature tensor is evaluated at a point \(R(t) \neq I \). That is, we get \(\mathcal{R}_{R}(\frac{\partial R}{\partial t}, \frac{\partial R}{\partial t}) \Omega \). Evaluating this at \(\epsilon = 0 \) we get \(\mathcal{R}_{R}(RW, RW) \Omega \). Since \(RW \) and \(RW \) are left-invariant vector fields at the group element \(R(t) \), by the identification \(T_{R}SO(3) \simeq \mathfrak{s}(3) \), we have \(\mathcal{R}_{R}(RW, RW) \Omega = \mathcal{R}(W, \Omega) \), which is the curvature tensor evaluated at the identity element. For a compact semi-simple Lie group \(G \) with Lie algebra \(\mathfrak{g} \), the curvature tensor, with respect to a bi-invariant metric, is given by (see [18]):

\[
\mathcal{R}(X, Y)Z = \frac{1}{4} \text{ad}_{\text{ad}_{X}Y}Z,
\]

for all \(X, Y, Z \in \mathfrak{g} \).

Using a Lagrange multiplier approach as in Section 2.2, we may show that the result of Theorem 21 is equivalent to the following theorem.

Theorem 22. The necessary optimality conditions for the problem of minimizing (6) subject to the dynamics (7) and the boundary conditions (8) are given by

\[
\tau = \Lambda_2,
\]

\[
\dot{\Lambda}_1 = \left[R \left((J(\Lambda_2))^2, \Omega \right) \right]^{\nabla} + \text{ad}_{\Omega}^{*}\Lambda_1
\]

\[
\dot{\Lambda}_2 = -J^{-1}(\Lambda_1) - \text{ad}_{\Omega}^{*}\Lambda_2 + J^{-1} \left(\text{ad}_{\Omega}^{*}M \right)
\]

as well as the equations (7) and the boundary conditions (8), where the Lagrange multipliers \(\Lambda_1 \in \mathfrak{s}(3) \), \(\Lambda_2 \in \mathfrak{s}(3) \) correspond to the kinematic and dynamics constraints (7), respectively.

Remark 21. Note that the equations of motion that arise from the Lagrange–d'Alembert principle are used to define the dynamic constraints. So, in effect, we are minimizing \(J \) subject to satisfying the Lagrange–d'Alembert principle for the rigid body. Analogously, the discrete version of the Lagrange–d'Alembert principle will be used to derive the discrete equations of motion.

\(^2\) Second order in \(\tau \) and fourth order in \(R \).
in the discrete optimal control problem to be studied in Section 3.3. This view is in line with the approach in [9] in that we do not discretize the equations of motion directly, but, instead, we discretize the Lagrange–d’Alembert principle. These two approaches are not equivalent in general.

Corollary 21. The necessary optimality conditions of Theorem 21 are equivalent to the necessary conditions of Theorem 22.

Proof In Theorem 22, differentiate Λ_2 once and then use all three differential equations to replace Λ_1 and Λ_2 with expressions involving only τ, M and Ω.

3 Discrete-Time Results

3.1 Problem Formulation

In this section we give the discrete version of the problem introduced in Section 2.1. So, we consider minimizing the norm squared of the control torque τ subject to satisfaction of the discrete Lagrange–d’Alembert principle for the rigid body whose configuration and body angular velocity at time step t_k are given by $R_k \in SO(3)$ and $\Omega_k \in so(3)$, respectively. The kinematic constraint may be expressed as

$$R_{k+1} = R_k \exp(h\Omega_k) = R_k g_k,$$

(14)

where h is the integration time step, $\exp: so(3) \to SO(3)$ is the exponential map and $g_k = \exp(h\Omega_k)$. The boundary conditions are given by (R_0^*, Ω_0^*) and (R_N^*, Ω_{N-1}^*), where $t_0 = 0$ and $N = T/h$ is such that $t_N = T$.

The reason we constrain Ω at $t = h(N - 1)$ instead of at $t = hN$ will become clear when we derive the discrete equations of motion in Section 3.2. A simple explanation for this is that a constraint on $\Omega_k \in so(3)$ corresponds, by left translations to a constraint on $\dot{R}_k \in T_{R_k}SO(3)$. In turn, in the discrete setting and depending on the choice of discretization, this corresponds to a constraint on the neighboring discrete points $\ldots, R_{k-2}, R_{k-1}, R_{k+1}, R_{k+2}, \ldots$. With our choice of discretization (equation (14)), this corresponds to constraints on R_k and R_{k+1}. Hence, to ensure that the effect of the terminal constraint on Ω is correctly accounted for, the constraint must be imposed on Ω_{N-1}, which entails some constraints on variations at both R_{N-1} and R_N. We will return to this point later in the paper.

Equation (14) is just one way of discretizing the kinematics of the rigid body. As will be shown below this discretization leads to the first-order Euler approximation for the planar rigid body dynamics (that is, on $SO(2)$). We make the above choice for discretization as it guarantees, in general, that the angular velocity matrix Ω_k remains on the algebra $so(3)$ by using the exponential map. This is natural to do in the context of discrete variational numerical solvers (for both initial value and two point boundary value problems). Following the methodology of [9], we have the following optimal control problem.
Problem 31. Minimize

\[J = \sum_{k=0}^{N-1} \frac{1}{2} \langle \tau_k, \tau_k \rangle \] \tag{15}

subject to

1. satisfying the discrete Lagrange–d’Alembert principle:

\[\delta \sum_{k=0}^{N-1} \frac{1}{2} \langle J(\Omega_k), \Omega_k \rangle + \sum_{k=0}^{N-1} \langle \tau_k, W_k \rangle = 0, \] \tag{16}

subject to \(R_0 = R_0^*, R_N = R_N^* \text{ and } R_{k+1} = R_k g_k, k = 0, \ldots, N - 1, \) where \(W_k \) is the variation vector field at time step \(t_k \) satisfying \(\delta R_k = R_k W_k \).

2. and the boundary conditions

\[R_0 = R_0^*, \quad \Omega_0 = \Omega_0^*, \quad R_N = R_N^*, \quad \Omega_{N-1} = \Omega_{N-1}^*. \] \tag{17}

In Problem 31, the discrete Lagrange–d’Alembert principle is used to derive the equations of motion for the rigid body with initial and terminal configuration constraints. Hence, we get a two point boundary value problem. The full configuration and velocity boundary conditions come into the picture when we study the optimal control problem. We will show that the constraint of satisfying the Lagrange–d’Alembert principle in Problem 31 leads to the following problem formulation, where the discrete rigid body equations of motion replace the Lagrange–d’Alembert principle constraint. Only when addressing the following optimal control problem will we need to include the velocity boundary conditions in the derivation.

Problem 32. Minimize

\[J = \sum_{k=0}^{N-1} \frac{1}{2} \langle \tau_k, \tau_k \rangle \] \tag{18}

subject to

1. the discrete dynamics

\[R_{k+1} = R_k g_k, \quad k = 0, \ldots, N - 1 \]
\[M_k = \text{Ad}_{g_k}^*(\hbar \tau_k + M_{k-1}), \quad k = 1, \ldots, N - 1, \] \tag{19}
\[M_k = J(\Omega_k), \quad k = 0, \ldots, N - 1, \]

2. and the boundary conditions

\[R_0 = R_0^*, \quad \Omega_0 = \Omega_0^*, \quad R_N = R_N^*, \quad \Omega_{N-1} = \Omega_{N-1}^*. \] \tag{20}
Regarding terminal velocity conditions, note that in the second of equations (19) if we let \(k = N \) we find that \(\Omega_N \) appears in the equation. A constraint on \(\Omega_N \) dictates constraints at the points \(R_N \) and \(R_{N+1} \) through the first equation in (19). Since we only consider time points up to \(t = Nh \), we cannot allow \(k = N \) in the second of equations (19) and hence our terminal velocity constraints are posed in terms of \(\Omega_{N-1} \) instead of \(\Omega_N \).

As mentioned above, \(W_k \) is a variation vector field associated with the perturbed group element \(R_k \). Likewise, we need to define a variation vector field associated with the element \(g_k = \exp(h\Omega_k) \). First, let the perturbed variable \(g_k \) be defined by

\[
g_k' = g_k \exp(\epsilon h\delta \Omega_k),
\]

where

\[
\delta \Omega = \frac{\partial \Omega_k}{\partial \epsilon} \bigg|_{\epsilon = 0}.
\]

Note that \(g_k' \big|_{\epsilon = 0} = g_k \) as desired. Moreover, we have

\[
\delta g_k = g_k (h \delta \Omega_k) \exp(\epsilon h \delta \Omega_k) \bigg|_{\epsilon = 0} = h g_k \delta \Omega_k.
\]

This will be needed later when taking variations.

3.2 The Discrete Lagrange–d’Alembert Principle and the Rigid Body Equations of Motion

In this section we derive the discrete forced rigid body equations of motion (equations (19)) starting with the discrete Lagrange–d’Alembert principle. We begin by rewriting the kinematic constraint as \(\exp^{-1} (R_k^{-1}R_{k+1}) = h\Omega_k \), which is an expression on the Lie algebra \(so(3) \), and appending it to the Lagrangian

\[
0 = \sum_{k=0}^{N} \langle \tau_k, W_k \rangle + \delta \sum_{k=0}^{N-1} \frac{1}{2} \langle J(\Omega_k), \Omega_k \rangle + \langle M_k, \exp^{-1} (R_k^{-1}R_{k+1}) - h\Omega_k \rangle,
\]

where \(M_k \in so^*(3), k = 0, 1, \ldots, N - 1, \) are Lagrange multipliers. These multipliers enforce the kinematic discrete equations. We could have added additional terms to enforce the configuration boundary conditions, allowing for \(W_0 \) and \(W_N \) to be arbitrary and non-zero. Instead, we elect to enforce the constraints by requiring \(W_0 = 0 \) and \(\delta \Omega_0 = 0 \). These two approaches are of course equivalent.

Taking variations of \(\exp^{-1} (R_k^{-1}R_{k+1}) - h\Omega_k = 0 \) is equivalent to taking variations of the original expression \(R_k^{-1}R_{k+1} = \exp(h\Omega_k) \), which is easier to handle as an expression over the Lie algebra. Once the variations are computed, one can easily obtain the Lie algebra-equivalent of the variations as follows. First take variations of the kinematics (14) to get
\[-R_k^{-1}(\delta R_k)R_{k+1}^{-1} + R_k^{-1}\delta R_{k+1} = hg_k \cdot \delta \Omega_k,\] which is equivalent to

\[-W_k g_k + g_k W_{k+1} = hg_k \delta \Omega_k,\]

or

\[\delta \Omega_k = \frac{1}{h} \left[-Ad_{g_k}^* W_k + W_{k+1} \right]. \tag{23}\]

Note that this is an expression over the Lie algebra \(\mathfrak{so}(3)\).

After simple algebraic and re-indexing operations, the Lagrange–d’Alembert principle gives

\[0 = \left\langle \tau_0 - \frac{1}{h} Ad_{g_0}^* M_0, W_0 \right\rangle + \left\langle \tau_N + \frac{1}{h} M_{N-1}, W_N \right\rangle + \sum_{k=1}^{N-1} \left\langle J(\Omega_k) - M_k, \delta \Omega_k \right\rangle + \sum_{k=1}^{N-1} \left\langle \tau_k - \frac{1}{h} Ad_{g_k}^* M_k + \frac{1}{h} M_{k-1}, W_k \right\rangle.\]

By the boundary conditions \(R_0 = R_0^*\) and \(R_N = R_N^*\), we have \(W_0 = 0\) and \(W_N = 0\). Since \(\delta \Omega_k, k = 0, \ldots, N - 1\), and \(W_k, k = 1, \ldots, N - 1\), are arbitrary and independent, then the Lagrange–d’Alembert principle requires that the equations (19) hold true. The variables \(M_k, k = 0, \ldots, N - 1\), are of course nothing but the discrete angular momentum of the rigid body. The equations (19) can be viewed in two ways. The first is to consider the two point boundary value problem where we retain the terminal condition on \(R_N\). In this case a (constrained) variety of a combination of control torques \(\tau_k, k = 0, \ldots, N\), and initial velocity conditions \(\Omega_0\) can be chosen to drive the rigid body from the initial condition \(R_0\) to the terminal condition \(R_0\). The second view is to treat it as an initial value problem by ignoring any terminal configuration constraints. In this case \(W_N \neq 0\) and any combination of control torques \(\tau_k, k = 0, \ldots, N\), and initial velocity conditions \(\Omega_0\) can be chosen freely.

A Direct Approach. Taking direct variations of the cost functional we obtain

\[0 = \left\langle \tau_0 - \frac{1}{h} Ad_{g_0}^* J(\Omega_0), W_0 \right\rangle + \left\langle \tau_N + \frac{1}{h} J(\Omega_{N-1}), W_N \right\rangle + \sum_{k=1}^{N-1} \left\langle \tau_k - \frac{1}{h} Ad_{g_k}^* J(\Omega_k) + \frac{1}{h} J(\Omega_{k-1}), W_k \right\rangle.\]

where we have used equation (23). This gives the same equations of motion as those in equation (19).

Simulation Results. To test our results, we re-write the discrete equations (19) for the subgroup \(SO(2)\). For \(SO(2)\) we have

\[R_k = \begin{bmatrix} \cos \theta_k & -\sin \theta_k \\ \sin \theta_k & \cos \theta_k \end{bmatrix}, \quad \Omega_k = \begin{bmatrix} 0 & -\omega_k \\ \omega_k & 0 \end{bmatrix} \tag{25}\]

and

\[\exp(\Omega_k) = \begin{bmatrix} \cos \omega_k & -\sin \omega_k \\ \sin \omega_k & \cos \omega_k \end{bmatrix}. \tag{26}\]
The inertia operation is simply given by

\[J(\mathbf{\Omega}_k) = \begin{bmatrix} 0 & -I_w \omega_k \\ I_w \omega_k & 0 \end{bmatrix}, \tag{27} \]

where \(I \) is the mass moment of inertia of the body about the out-of-plane axis. One can check that \(\text{Ad}_{\exp(\omega)} \xi = \xi \) and that \(\text{Ad}^*_{\exp(\omega)} \eta = \eta \), for all \(\xi, \omega \in \mathfrak{so}(2) \) and \(\eta \in \mathfrak{so}^*(2) \).

Then the equations (19) (treated as an initial value problem) are given for \(\text{SO}(2) \) by

\[\theta_{k+1} = \theta_k + h\omega_k, \quad k = 0, \ldots, N - 1 \]
\[\omega_k = \frac{h}{I} \tau_k + \omega_{k-1}, \quad k = 1, \ldots, N - 1 \tag{28} \]

in addition to the initial conditions \(\theta_0 = \theta^*_0, \omega_0 = \omega^*_0 \).

To verify the accuracy of our numerical computation, we give the corresponding continuous-time equations of motion for the planar rigid body on \(\text{SO}(2) \) using equations (7). The Lie bracket on \(\text{SO}(2) \) is identically equal to zero. Hence, one can check that the equations (7) are given by \(\dot{\theta} = \omega, \dot{\omega} = \tau \), where \(\theta, \omega \) and \(\tau \) are the continuous time angular position, velocity and torque, respectively. We integrate the equations using the torque \(\tau(t) = \sin \left(\frac{\pi t}{2} \right), t \in [0, T] \). We use the following parameters for our simulations: \(T = 10, I = 1, \theta(0) = 3, \omega(0) = 4 \) and we try three different time steps corresponding \(N = 1000, 1500, 2000 \). The error between the continuous- and discrete-time values of \(\theta \) and \(\omega \) are given in Figure (1). Note that the accuracy of the simulation improves with increasing \(N \).

Fig. 1 Error dynamics on \(\text{SO}(2) \).

Remark 31. Note that the discrete-time equations (28) correspond to the Euler approximation for the equations of motion. This is a check that our method returns something familiar for a simple example as the planar rigid body. However, we emphasize that on \(\text{SO}(3) \) the discretization will not necessarily be equivalent to any of the classical discretization schemes. The discretization will generally result in a set of nonlinear implicit algebraic equations.
3.3 Discrete-Time Variational Optimal Control Problem

We now address Problem 32 by first forming the appended cost functional:

\[
J = \sum_{k=0}^{N-1} \left(\frac{1}{2} \langle \tau_k, \tau_k \rangle + \sum_{k=0}^{N-1} \langle \Lambda_1^k, -h\Omega_k + \exp^{-1}(R_k^{-1}R_{k+1}) \rangle + \sum_{k=1}^{N-1} \langle M_k - \text{Ad}^\ast_{g_k}(h\tau_k + M_{k-1}), \Lambda_2^k \rangle \right).
\]

Writing \(M_k = \text{Ad}^\ast_{g_k}(h\tau_k + M_{k-1}) \) as \(M_k = g_k^{-1}(h\tau_k + M_{k-1})g_k \) and taking variations of this expression, we obtain

\[
\delta M_k = -h\delta \Omega_k g_k^{-1}(h\tau_k + M_{k-1})g_k + g_k^{-1}(h\delta \tau_k + \delta M_{k-1})g_k = -h\delta \Omega_k M_k + \text{Ad}^\ast_{g_k}(h\delta \tau_k + J(\delta \Omega_{k-1})) + hM_k \delta \Omega_k
\]

In obtaining this expression we used the facts that \(\delta g_k = h\delta \Omega g_k^{-1} \) and \(\delta (g_k^{-1}) = -h\delta \Omega g_k^{-1} \). The latter equality is obtained as follows. Taking variations of \((g_k^0)^{-1}(g_k^0) = I \) we obtain

\[
0 = \delta (g_k^{-1}) g_k + h g_k^{-1} g_k \delta \Omega
\]

which implies that

\[
\delta (g_k^{-1}) = -h\delta \Omega g_k^{-1},
\]

which is the desired result.

We now also consider the velocity boundary conditions \(\Omega_0 = \Omega_0^\ast \) and \(\Omega_{N-1} = \Omega_{N-1}^\ast \). Note that variations in \(\delta \Omega_k \) directly induce variations in \(W_{k+1} \). In particular, if \(k = 0 \) and we have the initial constraints \(R_0 = R_0^\ast \) and \(\Omega_0 = \Omega_0^\ast \), then \(W_0 = 0 \) and \(\delta \Omega_0 = 0 \). Using these two equations in equation (23), we find that

\[
W_1 = 0. \tag{29}
\]

At \(k = N, N - 1 \), the constraints \(R_N = R_N^\ast \) and \(\Omega_{N-1} = \Omega_{N-1}^\ast \) imply that \(W_N = 0 \) and \(\delta \Omega_{N-1} = 0 \). Using these two equations in equation (23), we find that

\[
W_{N-1} = 0. \tag{30}
\]

The observations stated in equations (29) and (30) are equivalent to having

\[
R_1 = R_0^\ast \exp(h\Omega_0^\ast), \quad R_{N-1} = R_N^\ast \exp(-h\Omega_{N-1}^\ast). \tag{31}
\]
Taking variations of the cost functional, we obtain

\[
\delta J = \sum_{k=0}^{N} \left< \delta \tau_k, \tau_k^\sharp \right> + \sum_{k=0}^{N-1} \left< \Delta_k - \delta \Omega_k + \frac{1}{\mathcal{W}} \left[-\text{Ad}_{g_k} W_k + W_{k+1} \right] \right>
\]

\[
+ \sum_{k=0}^{N-1} \left< J (\delta \Omega_k) - \text{Ad}_{g_k} (h \delta \tau_k + J (\delta \Omega_{k-1})) - h [M_k, \delta \Omega_k], \Delta_k^2 \right>
\]

where we have replaced \(\delta M_k\) with \(J (\delta \Omega_k)\). Collecting terms, we finally obtain

\[
\delta J = \left< \delta \tau_0, \tau_0^\sharp \right> + \left< \delta \tau_N, \tau_N^\sharp \right> + \sum_{k=1}^{N-1} \left< \delta \tau_k, \tau_k^\sharp - h \text{Ad}_{g_k} \Delta_k^2 \right>
\]

\[
+ \left< -A_0^0 - J (\text{Ad}_{g_0} \Lambda_0^2), \delta \Omega_0 \right>
\]

\[
+ \left< -A_{N-1}^0 + J (\Lambda_{N-1}^2) + h [M_{N-1}, \Lambda_{N-1}^2], \delta \Omega_{N-1} \right>
\]

\[
+ \sum_{k=1}^{N-2} \left< -A_k^0 + J (\Lambda_k^2) - J (\text{Ad}_{g_{k+1}} \Lambda_{k+1}^2) + h [M_k, \Lambda_k^2], \delta \Omega_k \right>
\]

\[
+ \left< -\frac{1}{h} \text{Ad}_{g_0}^* \Lambda_0^0, W_0 \right> + \left< \frac{1}{h} \Lambda_{N-1}^1, W_N \right>
\]

\[
+ \left< -\frac{1}{h} \text{Ad}_{g_1}^* \Lambda_1^0 + \frac{1}{h} \Lambda_0^1, W_1 \right> + \left< -\frac{1}{h} \text{Ad}_{g_{N-1}}^* \Lambda_{N-1}^1 + \frac{1}{h} \Lambda_{N-2}^1, W_{N-1} \right>
\]

\[
+ \sum_{k=2}^{N-2} \left< \frac{1}{h} \left[\Lambda_{k-1}^1 - \text{Ad}_{g_k}^* \Lambda_k^1 \right], W_k \right>
\]

Setting \(\delta J\) to zero, using the conditions \(W_0 = W_1 = W_{N-1} = W_N = \delta \Omega_0 = \delta \Omega_{N-1} = 0\), and the fact that the variations \(W_k, \Omega_k\) and \(\delta \tau_k\) are independent, we obtain the following theorem.

Theorem 31. The necessary optimality conditions for the discrete Problem 32 are

\[
R_{k+1} = R_{k+1} g_k, \quad k = 1, \ldots, N - 2
\]

\[
M_k = \text{Ad}_{g_k}^* (h \tau_k + M_{k-1}), \quad k = 1, \ldots, N - 1
\]

\[
0 = \Delta_{k-1}^1 - \text{Ad}_{g_k}^* \Lambda_k^1, \quad k = 2, \ldots, N - 2
\]

\[
0 = -\Lambda_1^1 + J (\Lambda_1^2) - J (\text{Ad}_{g_{k+1}} \Lambda_{k+1}^2) + h [M_k, \Lambda_k^2], \quad k = 1, \ldots, N - 2
\]

\[
\tau_k = h (\text{Ad}_{g_k} \Lambda_k^2), \quad k = 1, \ldots, N - 1
\]

\[
M_k = J (\Omega_k), \quad k = 0, \ldots, N - 1
\]
and the boundary conditions
\[\begin{align*}
R_0 &= R_0^*, \quad R_1 = R_0^* g_0^*, \quad \Omega_0 = \Omega_0^*
R_N &= R_N^*, \quad R_{N-1} = R_N^* (g_{N-1}^*)^{-1}, \quad \Omega_{N-1} = \Omega_{N-1}^*
\end{align*} \]
\[\tau_0 = \tau_N = 0, \]
where \(g_0^* = \exp(h\Omega_0^*) \) and \(g_{N-1}^* = \exp (h\Omega_{N-1}^*) \).

A Second Order Direct Approach. Analogous to the direct approach in continuous time, here we derive the necessary optimality conditions in a form that does not involve the use of Lagrange multipliers. Using equation (23) and taking variation of the second of equations (19), we obtain
\[\delta \tau_k = Ad_{g_k}^* \left[\frac{1}{h^2} J \left(W_{k+1} - Ad_{g_k} W_k \right) + \frac{1}{h} \left(W_{k+1} - Ad_{g_k} W_k, J (\Omega_k) \right) \right]
- \frac{1}{h^2} J \left(W_k - Ad_{g_{k-1}} W_{k-1} \right), \]
for \(k = 1, \ldots, N-1 \). Taking variations of the cost functional (18) and substituting from equation (33) one obtains after a tedious but straightforward computation an expression for \(\delta \mathcal{J} \) in terms of \(\delta \tau_k \).
\[\delta \mathcal{J} = \sum_{k=1}^{N-1} \left(Ad_{g_k}^* \left[\frac{1}{h^2} J \left(W_{k+1} - Ad_{g_k} W_k \right) \right]
+ \frac{1}{h} \left[W_{k+1} - Ad_{g_k} W_k, J (\Omega_k) \right] \right)
- \frac{1}{h^2} J \left(W_k - Ad_{g_{k-1}} W_{k-1} \right), \]
\[= \langle \delta \tau_0, \tau_0^* \rangle + \langle \delta \tau_{N-1}, \tau_{N-1}^* \rangle + \langle \delta \tau_N, \tau_N^* \rangle
+ \langle W_1, -\frac{1}{h^2} J (\tau_1^*) + Ad_{g_1}^* \left(J (Ad_{g_1} \tau_1^*) \right) \rangle
- \frac{1}{h} Ad_{g_1}^* \left[J (\Omega_1), Ad_{g_1} (\tau_1^*) \right] \rangle
+ \langle W_N, -\frac{1}{h^2} J (\tau_N^*) + Ad_{g_{N-1}}^* \left(J (Ad_{g_{N-1}} \tau_N^*) \right) \rangle
- \frac{1}{h} Ad_{g_{N-1}}^* \left[J (\Omega_{N-1}), Ad_{g_{N-1}} (\tau_N^*) \right] \rangle
+ \sum_{k=2}^{N-2} \left(-\frac{1}{h^2} J (\tau_k^*) - Ad_{g_k}^* J (\tau_{k+1}^*) \right)
- J (Ad_{g_k} \tau_{k+1}^*) \rangle \]
\[- \frac{1}{h} \left(Ad_{g_k}^* \left[J (\Omega_k), Ad_{g_k} \tau_k^* \right] \right) - \frac{1}{h} \left(J (\Omega_{k-1}), Ad_{g_{k-1}} \tau_{k-1}^* \right) \rangle, \]
\[W_k. \]
When δJ is equated to zero, the resulting equation gives (boundary) conditions on $\tau_0, \tau_1, \tau_{N-1}, \tau_N$ as well as discrete evolution equations that are written in algebraic nonlinear form as:

$$
0 = -\frac{1}{h^2} \left(J(\tau^+_k) - Ad^*_{g_k^{-1}} J(\tau^+_k) - J(Ad_{g_k^{-1}} \tau^+_k) + Ad^*_{g_k} \left(Ad_{g_k^{-1}} \tau^+_k \right) \right) \\
- \frac{1}{h^2} \left[J(\tau^+_k), Ad_{g_k^{-1}} \left(\tau^+_k \right) \right],
$$

for $k = 2, \ldots , N - 2$.

4 Numerical Approach and Results

The multiplier-free version of the first-order optimality equations, equation (33), in combination with the boundary conditions,

$$
R_0 = R_0^*, \quad R_N = R_N^*, \quad \Omega_0 = \Omega_0^*, \quad \Omega_{N-1} = \Omega_{N-1}^*,
$$

leave the torques $\tau_1, \ldots, \tau_{N-1}$, and the angular velocities $\Omega_1, \ldots, \Omega_{N-2}$ as unknowns. By substituting the relations $g_k = \exp(h\Omega_k), M_k = J(\Omega_k)$, we can rewrite the necessary conditions (33) as follows,

$$
0 = -\frac{1}{h^2} \left(J(\Omega) - Ad^*_{\exp(-h\Omega)} J(\Omega) - J(Ad_{\exp(-h\Omega)} \Omega) \right) \\
+ Ad^*_{\exp(-h\Omega)} \left(Ad_{\exp(-h\Omega)} \Omega \right) \\
- \frac{1}{h} \left[J(\Omega), Ad_{\exp(-h\Omega)}(\Omega) \right] \\
- \frac{1}{h} \left[J(\Omega), Ad_{\exp(-h\Omega)}(\Omega) \right],
$$

where $k = 2, \ldots , N - 2$, and the discrete evolution equations, given by line 2 of (32), can be written as

$$
0 = J(\Omega) - Ad^*_{\exp(h\Omega)}(h\tau_k + J(\Omega_{k-1})),
$$

where $k = 1, \ldots , N - 1$. In addition, we use the boundary conditions on R_0 and R_N, together with the update step given by line 1 of (32) to give the last constraint, $0 = \log \left(R_N^{-1} R_0 \exp(h\Omega_0) \ldots \exp(h\Omega_{N-1}) \right)$, where log is the logarithm map on $SO(3)$.

At this point it should be noted that one important advantage of the manner in which we have discretized the optimal control problem is that it is $SO(3)$-equivariant. This is to say that if we rotated all the boundary conditions by a fixed rotation matrix, and solved the resulting discrete optimal control problem, the solution we would obtain would simply be the rotation of the solution of the original problem. This can be seen quite clearly from
the fact that the discrete problem is expressed in terms of body coordinates, both in terms of body angular velocities and body forces. In addition, the initial and final attitudes R_0 and R_N only enter in the last equation as a relative rotation.

The $\text{SO}(3)$-equivariance of our numerical method is desirable, since it ensures that our results do not depend on the choice of coordinate frames. This is in contrast to methods based on coordinatizing the rotation group using quaternions and Euler angles.

Each of the equations above take values in $\mathfrak{so}(3)$. Consider the Lie algebra isomorphism between \mathbb{R}^3 and $\mathfrak{so}(3)$ given by the hat map,

$$\mathbf{v} = (v_1, v_2, v_3) \mapsto \hat{\mathbf{v}} = \begin{bmatrix} 0 & -v_3 & 2v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{bmatrix},$$

which maps 3-vectors to 3×3 skew-symmetric matrices. In particular, we have the following identities,

$$[\hat{\mathbf{u}}, \hat{\mathbf{v}}] = (\mathbf{u} \times \mathbf{v})^\wedge, \quad \text{Ad}_A \hat{\mathbf{v}} = (A\mathbf{v})^\wedge.$$

Furthermore, we identify $\mathfrak{so}(3)^*$ with \mathbb{R}^3 by the usual dot product, that is to say if $\Pi, \mathbf{v} \in \mathbb{R}^3$, then $\langle \Pi, \mathbf{v} \rangle = \Pi \cdot \mathbf{v}$. With this identification, we have that $\text{Ad}_{A^{-1}}^*\Pi = A^*\Pi$. Using the identities above, we write the necessary conditions using matrix-vector products and cross products. Then, each of the equations can be interpreted as 3-vector valued functions, and the system of equations can be considered as a $3(2N - 3)$-vector valued function, which is precisely the dimensionality of the unknowns. This reduces the discrete optimal problem to a nonlinear root finding problem.

We used a Newton-Armijo method, which is a line search algorithm that uses the Newton search direction, together with backtracking to ensure sufficient descent of the residual error. The Jacobian is constructed column by column, where the k-th column is computed using the following approximation,

$$\frac{\partial F}{\partial x_k}(x) = \frac{1}{\epsilon} \text{Im}[F(x + i\epsilon \mathbf{e}_k)],$$

where $i = \sqrt{-1}$, \mathbf{e}_k is a basis vector in the x_k direction, and ϵ is of the order of machine epsilon. This method is preferable to a finite-difference approximation, since it does not suffer from round-off errors, which would otherwise limit how small ϵ can be.

In our numerical simulation, we computed an optimal trajectory for a rest-to-rest maneuver, as illustrated in Figure (2). In this simulation $N = 128$, and essentially identical results were obtained for $N = 64$. It is worth noting that the results are not rotationally symmetric about the midpoint of the simulation interval, which is due to the fact that our choice of update, $R_{k+1} = R_k \exp(h\Omega_k)$, does not exhibit time-reversal symmetry. In a forthcoming publication, we will introduce a reversible algorithm to address this issue.

We also present results for an optimal slew-up maneuver, illustrated in Figure (3). The resolution is $N = 128$, and essentially identical results were obtained for $N = 64$.

5 Conclusion

In this paper we studied the continuous- and discrete-time optimal control problem for the rigid body, where the cost to be minimized is the external torque applied to move the rigid body from an initial condition to some
pre-specified terminal condition. In the discrete setting, we use the discrete Lagrange–d’Alembert principle to obtain the discrete equations of motion. The kinematics were discretized to guarantee that the flow in phase space remains on the Lie group \(\text{SO}(3) \) and its algebra \(\text{so}(3) \). We described how the necessary conditions can be solved for the general three-dimensional case and gave a numerical example for a three-dimensional rigid body maneuver.

Currently, we are investigating the use of the Pontryagin’s maximum principle in continuous- and discrete-time to obtain the necessary conditions. Additionally, we wish to generalize the result to general Lie groups that have applications other than the rigid body motion on \(\text{SO}(3) \). In particular, we are interested in controlling the motion of a rigid body in space, which corresponds to motion on the non-compact Lie group \(\text{SE}(3) \).

Acknowledgments

The research of Melvin Leok was partially supported by NSF grant DMS-0504747 and a University of Michigan Rackham faculty grant. The research of Anthony Bloch was supported by NSF grants DMS-030583, and CMS-0408542.

References